Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
drug_cos.csv
, health_cos.csv
in to R and assign the variables drug_cos
and health_cos
, respectivelydrug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
glimpse
to get a glimpse of the datadrug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "Z...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Z...
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "N...
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0....
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0....
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0....
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0....
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0....
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 20...
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZT...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zo...
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 478500000...
$ gp <dbl> 2581000000, 2773000000, 2892000000, 306800000...
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3...
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3...
$ assets <dbl> 5711000000, 6262000000, 6558000000, 658800000...
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 525100000...
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635...
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 201...
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "...
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order): ticker
, year
, grossmargin
Extract observations for 2018
Assign output to drug_subset
For health_cos
select (in this order): ticker
, year
, revenue
, gp
, industry
Extract obersvations for 2018
Assign output to health_subset
drug_subset <- drug_cos %>%
select(ticker, year, grossmargin) %>%
filter(year == 2018)
health_subset <- health_cos %>%
select(ticker, year, gp, industry) %>%
filter(year == 2018)
drug_subset
join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 x 5
ticker year grossmargin gp industry
<chr> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 3.91e 9 Drug Manufacturers - Specialty~
2 PRGO 2018 0.387 1.83e 9 Drug Manufacturers - Specialty~
3 PFE 2018 0.79 4.24e10 Drug Manufacturers - General
4 MYL 2018 0.35 4.00e 9 Drug Manufacturers - Specialty~
5 MRK 2018 0.681 2.88e10 Drug Manufacturers - General
6 LLY 2018 0.738 1.81e10 Drug Manufacturers - General
7 JNJ 2018 0.668 5.45e10 Drug Manufacturers - General
8 GILD 2018 0.781 1.73e10 Drug Manufacturers - General
9 BMY 2018 0.71 1.60e10 Drug Manufacturers - General
10 BIIB 2018 0.865 1.16e10 Drug Manufacturers - General
11 AMGN 2018 0.827 1.96e10 Drug Manufacturers - General
12 AGN 2018 0.861 1.36e10 Drug Manufacturers - General
13 ABBV 2018 0.764 2.50e10 Drug Manufacturers - General
Start with drug_cos
Extract observations for the ticker BIIB from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset <- drug_cos %>%
filter(ticker == "BIIB")
drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BIIB Biog~ Massach~ 0.404 0.908 0.245 0.333 0.204
2 BIIB Biog~ Massach~ 0.402 0.901 0.25 0.335 0.211
3 BIIB Biog~ Massach~ 0.432 0.876 0.269 0.355 0.233
4 BIIB Biog~ Massach~ 0.475 0.879 0.302 0.404 0.294
5 BIIB Biog~ Massach~ 0.493 0.885 0.33 0.437 0.321
6 BIIB Biog~ Massach~ 0.491 0.871 0.323 0.431 0.322
7 BIIB Biog~ Massach~ 0.495 0.867 0.207 0.407 0.209
8 BIIB Biog~ Massach~ 0.511 0.865 0.329 0.435 0.334
# ... with 1 more variable: year <dbl>
Use left_join to combine the rows and colums of drug_cos_subset
with the columns of health_cos
Assign the output to combo_df
combo_df <- drug_cos_subset %>%
left_join(health_cos)
combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BIIB Biog~ Massach~ 0.404 0.908 0.245 0.333 0.204
2 BIIB Biog~ Massach~ 0.402 0.901 0.25 0.335 0.211
3 BIIB Biog~ Massach~ 0.432 0.876 0.269 0.355 0.233
4 BIIB Biog~ Massach~ 0.475 0.879 0.302 0.404 0.294
5 BIIB Biog~ Massach~ 0.493 0.885 0.33 0.437 0.321
6 BIIB Biog~ Massach~ 0.491 0.871 0.323 0.431 0.322
7 BIIB Biog~ Massach~ 0.495 0.867 0.207 0.407 0.209
8 BIIB Biog~ Massach~ 0.511 0.865 0.329 0.435 0.334
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
ticker
, name
, location
and industry
are the same for all the observationsco_name
co_name <- combo_df %>%
distinct(name) %>%
pull()
co_location
co_location <- combo_df %>%
distinct(location) %>%
pull()
co_industry
groupco_industry <- combo_df %>%
distinct(industry) %>%
pull()
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Biogen Inc is located in Massachusetts; U.S.A and is a member of the Drug Manufacturers - General industry group.
Start with combo_df
Select variables (in this order) year
, grossmargin
, netmargin
, revenue
, gp
, netincome
Assign the output to combo_df_subset
combo_df_subset <- combo_df %>%
select(year, grossmargin, netmargin, revenue, gp, netincome)
combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.908 0.245 5048634000 4581854000 1234428000
2 2012 0.901 0.25 5516461000 4970967000 1380033000
3 2013 0.876 0.269 6932200000 6074500000 1862300000
4 2014 0.879 0.302 9703300000 8532300000 2934800000
5 2015 0.885 0.33 10763800000 9523400000 3547000000
6 2016 0.871 0.323 11448800000 9970100000 3702800000
7 2017 0.867 0.207 12273900000 10643900000 2539100000
8 2018 0.865 0.329 13452900000 11636600000 4430700000
Create the variable grossmargin_check
to compare the variable grossmargin
. They should be equal.
grossmargin_check = gp / revenue
Create the variable close_enough
to check that the absolute value of the difference between grossmargin_check
and grossmargin
is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue, close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.908 0.245 5.05e 9 4.58e 9 1.23e9
2 2012 0.901 0.25 5.52e 9 4.97e 9 1.38e9
3 2013 0.876 0.269 6.93e 9 6.07e 9 1.86e9
4 2014 0.879 0.302 9.70e 9 8.53e 9 2.93e9
5 2015 0.885 0.33 1.08e10 9.52e 9 3.55e9
6 2016 0.871 0.323 1.14e10 9.97e 9 3.70e9
7 2017 0.867 0.207 1.23e10 1.06e10 2.54e9
8 2018 0.865 0.329 1.35e10 1.16e10 4.43e9
# ... with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check
to compare with the variable netmargin
. They should be equal.
Create the variable close_enough
to check that the absolute value of the difference between netmargin_check
and netmargin
is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue, close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.908 0.245 5.05e 9 4.58e 9 1.23e9
2 2012 0.901 0.25 5.52e 9 4.97e 9 1.38e9
3 2013 0.876 0.269 6.93e 9 6.07e 9 1.86e9
4 2014 0.879 0.302 9.70e 9 8.53e 9 2.93e9
5 2015 0.885 0.33 1.08e10 9.52e 9 3.55e9
6 2016 0.871 0.323 1.14e10 9.97e 9 3.70e9
7 2017 0.867 0.207 1.23e10 1.06e10 2.54e9
8 2018 0.865 0.329 1.35e10 1.16e10 4.43e9
# ... with 2 more variables: netmargin_check <dbl>,
# close_enough <lgl>
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos
data
For each industry calculate
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 x 5
industry mean_netmargin_~ median_netmargi~ min_netmargin_p~
* <chr> <dbl> <dbl> <dbl>
1 Biotech~ -4.66 7.62 -197.
2 Diagnos~ 13.1 12.3 0.399
3 Drug Ma~ 19.4 19.5 -34.9
4 Drug Ma~ 5.88 9.01 -76.0
5 Healthc~ 3.28 3.37 -0.305
6 Medical~ 6.10 6.46 1.40
7 Medical~ 12.4 14.3 -56.1
8 Medical~ 1.70 1.03 -0.102
9 Medical~ 12.3 14.0 -47.1
# ... with 1 more variable: max_netmargin_percent <dbl>
Fill in the blanks
Use the health_cos
data
Extract observations for the ticker ILMN from health_cos
and assign to the variable health_cos_subset
health_cos_subset <- health_cos %>%
filter(ticker == "ILMN")
health_cos_subset
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ILMN Illu~ 1.06e9 7.09e8 1.97e8 86628000 2.20e9 1120625000
2 ILMN Illu~ 1.15e9 7.74e8 2.31e8 151254000 2.57e9 1247504000
3 ILMN Illu~ 1.42e9 9.12e8 2.77e8 125308000 3.02e9 1485804000
4 ILMN Illu~ 1.86e9 1.30e9 3.88e8 353351000 3.34e9 1876842000
5 ILMN Illu~ 2.22e9 1.55e9 4.01e8 462000000 3.69e9 1839194000
6 ILMN Illu~ 2.40e9 1.67e9 5.04e8 454000000 4.28e9 2011000000
7 ILMN Illu~ 2.75e9 1.83e9 5.46e8 725000000 5.26e9 2508000000
8 ILMN Illu~ 3.33e9 2.30e9 6.23e8 826000000 6.96e9 3114000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
?distinct
. Go to the help pane to see what distinct
does?pull
. Go to the help pane to see what pull
doesRun the code below
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Illumina Inc"
co_name
co_name <- health_cos_subset %>%
distinct(name) %>%
pull(name)
You can take output from your code and include it in your text.
co_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
This is outside the Rchunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text. The company Illumina Inc is a member of the Diagnostics & Research group.
df
glimpse
to glimpse the data for the plotsdf %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "D...
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.0685187...
use ggplot
to initialize the chart
data is df
the variable industry
is mapped to the x-axis
med_rnd_dev
the variable med_rnd_rev
is mapped to the y-axis
add a bar chart using geom_col
use scale_y_continuous
to label the y-axis with percent
use coord_flip()
to flip the coordinates
use labs
to add title, subtitle and remove x and y-axes
use theme_ipsum()
from the hrbrthemes package to improve the theme
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()
ggsave(filename = "preview.png", path = here::here("_posts", "2021-03-14-joining-data"))
start with the data df
use arrange
to reorder med_rnd_rev
use e_charts
to initialize a chart
add a bar chart using e_bar
with the values of med_rnd_rev
use e_flip_coords()
to flip the coordinates
use e_title
to add the title and the subtitle
use e_legend
to remove the legends
use e_x_axis
to change format of labels on x-axis to percent
use e_y_axis
to remove labels on y-axis
use e_theme
to change the theme. Find more themes here
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry,
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("chalk")